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Abstract. This paper demonstrates how the
concept of the value of the service provided
by a system can be efficiently handled by
the systems engineering methodology.
Following a general formulation of the
problem, two examples from the class of
systems in which each element contributes
to the system output are provided; the first
to illustrate the allocation of repair effort to
elements of unequal size, the second to
show how the value placed on the output
level influences the repair policy.

INTRODUCTION

Every system has a purpose and produces
something. This is its service, and that
service is deemed to have a value, W
(measured e.g. in dollars per unit time). Due
to (random) failures of its elements and
subsequent repair actions, the system will
settle down to a steady state in which the
value is somewhat less than that of the fully
intact state. The higher the rate of repair,
and therefore also the rate of repair cost,
C, the greater will be the value, and the
general problem of the optimal repair policy
is to maximize W-C by choosing the
appropriate affocation of C.

This problem, and closely related ones, have
been treated in several different ways, as is
Hustrated by a few representative references
[1-3]. Much of this work has been

concerned with developing rules or
algorithms for how to allocate costs to the
various repair elements and with how to
manage them in order to optimize the cost-
effectiveness of systems. These are both
important and complex problems, as they
influence many aspects of systems, such as
training levels, maintainability, and spare
parts scaling, but the formulation is usually
in terms of specific cases and does not
provide a basis for a common approach to
such problems.

The purpose of the present paper is to show
how the general problem can be elegantly
formulated within the systems engineering
framework [4-6] and to illustrate this
approach by means of two examples within
a particular class of systems.

GENERAL FORMULATION OF THE
PROBLEM

Consider a system consisting of N
interacting elements.  The state of an
element is described by a single binary
vatiable s; £ {0,1}, i=1, ..., N, corresponding
to failed and operating, and the transitions
between these two states are governed by a
failure rate, 4,, and a repair rate, u;.

This system has 2V basic system states,
each one characterized by an N-dimensional
vector s with components s;. The number of



system states with respect to the two
functional parameters W and C will depend
on the extent to which the elements can be
distinguished by these parameters. If the
system is homogeneous {i.e. the elements
are all identical), there are up to N+1 system
states, characterized by the number, n, of
operating elements. if the system is
heterogeneous, there can be anything up to

system siates. [n any case, let the
system state space, S, consist of M states,
with 2<M<2", and let, as usual [6], g(s} =
g, I=1, ..., M, satisfying the condition

29=1, (1)

be the probability of finding the system in
the state s; the vector ¢ = (q,, ..., g is the
superstate of the system.

Transistions between system states, i.e. the
dynamics of the system, are governed by
the transition rate matrix, . This matrix
can be written as the sum of three matrices.
Two of these are the failure rate matrix, A,
and the repair rate matrix, g, such that 4
consists of the transition rates from a state
to states with lower values of W, and pu
consists of the transition rates from a state
to states with higher values of W. The third
matrix is a diagonal matrix with elements
defined by

vy =1- Y- Yuy.

This simply ensures that the matrix ¥
satisfies the condition

EYI‘[ = 1: i=11 erey M! (2)

a necessary and sufficient condition for y to
be a transformation which preserves the
probability character of q, as expressed by
Eq.1.

A particular representation of the transistion
rate matrix occurs if the system states are
ordered such that />j implies W(s)>W(s).
Then 4 is a lower triangular matrix and u an

upper triangular matrix, as shown in Fig.1.
in the following, this ordering shall be
assumed, and the corresponding
representation of y may be called its normal
representation.

Fig.1 The decomposition of
the transition rate matrix
under its normal ordering.

In general, g is a function of ¢, and this can
be made explicit by the notation q(s;i).
However, of particular interest is the case
where g is not a function of t, i.e. dg/dt = 0;
such a steady state is characteristic of
many practical systems for the greater part
of their operational lifetime. The condition
that must be fulfiled in order for ¢ to
represent a steady state is

gy =G . (3)

Consider now the case where the failure rate
matrix A is assumed to be given and
unchageable, then Eq.3 can be viewed as a
mapping from the set of all possible repair
rate matrices, u, to the set of superstates.
That is, to each choice of u there
corresponds a steady state, ¢, and
consequently also a value, W,. Bulto each
possible choice of u there also corresponds
a value of C , the cost of providing the level
of repair represented by u, so the quantity
W# - C,; = (W—C)# is a function of u, and



there must, in principle, exist a particular T-popo T By 0
choice of g which maximizes this function.

Ay T2 0 Ky
In the above, the repair rate matrix g is
constrained to be a point in the set of Ay 0 1-Aypy M
possible repair matrices. What is possible is
a practical problem, determined by the 0 Aq Ay Vdynhy

details of the case under consideration, and
cannot be described further In any
theoretical, generally valid form. In a
particular case, different allocation of repair
cost, e.9. 1o spare parts holdings, repair
crews on standby, etc, will result in different
repair rates, but there will be strong
dependencies between the elements of u.

A SIMPLE EXAMPLE

Consider a system consisting of two
elements which have the same function and
operate in parallel, as in the case of two
generators supplying power to a common
load. Element 1 has a capacity A,, failure
rate 1,, and repair rate u,; element 2 has a

capacity A,, failure rate 2, and repair rate Fig2 State diagram of the
f,. The system has four system staies, two-element system.
Consequently, the failure rate and repair rate
SYSTEM  ELEMENT  ELEMENT matrices, introduced above, are given by,
STATE 1 2 respectively,
4 1 1
0 0 0 0
3 1 0 Ao 0 0 0
Ay 0 0 0
2 0 1 0 Ay Ao 0
1 0 0
and

The state diagram is shown in Fig.2, and the
tfransition rate matrix, y, is given by

cooco

ocoox

ocoox
>



The superstate q = (q, 9 95 G,
representing the steady state of this system

iIs found by solving the four simuitaneous
linear equations implicit in Eq.3, and the
result is:

Q1 = 4 fl(A;+p) (A A)] .
Q2 = Ag[1-25(Ap+p)Il(As+ 1)
Qg = A1-2,(A;+p )R+ 1)
Qs = paptpl[(Ag+p ) (At py)]

To make this example really simple and easy
to comprehend (but retaining the essential
features it is supposed to demonstrate), it is
necessary to make a few asumptions and
approximations. The first of these is the
assumption that the two elements have the
same dominant failure mechanism and that

this is independent of size, l.e. that 4, = 4,

= A. Introduce the two new variables,

a=2Mutp), B = (urpulptu),

and assume that « << 1, then the
superstate is (approximately) given by

q'{ = azl(-’-p?) ]

qp = «l(1-p) ,
q3 = “/(1+ﬁ) )
q, = 1-2¢.

Normalize the element size by setting A,= 1,
let A,fA; = x > 17 (this restriction is simply a
matter of the numbering of the elements),
and assume that the cost of maintenance is
proportional to «, but independent of g. As
a result,

AW-C)/3p = NIGp .

All that is needed now is the value function,

W, and for simplicity, W will be taken to be
proportional to the system capacity. Then,

W= ax(1-g) + a(1+8) + (1-2a)(1+x) ,
and now setting sW/ag8 equal to zero yields

(1+B)I(1-8) = x*.

This result is shown graphically in Fig.3, and
is exactly what one would expect. With
increasing difference in capacity between
the two elements, the repair capability needs
to be shifted more and more in favour of the
element with the larger capacity.
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Fig.3 The split in repair rates,
g, as a function of the
difference in capacity, x.

A MORE GENERAL EXAMPLE

Consider the special class of systems where

a. the systems are homogeneous, i.e.
all the elements within a system are
identical;

b. each element is in one of two staies,

operating or failed, with transitions
between them governed by a failure
rate A and a repair rate p; and

C. each element, when it is in the
operating stte, contributes equally to
the magnitude of the system output,



iie. to the amount of whatever

product or service the system
produces.
The formulation of this definition s
important. The elements are independent

only with respect to the variable considered
here (i.e. the magnitude of the output); it
does not mean that the elements are non-
interacting in other respects. For example,
the dynamic stability of an electricity supply
grid Is very much dependent on the
interactions between the generators, and the
performance of an army depends on the
interaction between its individual soldiers,
but for many purposes one can equate
output to the number of operating elements.

A system in this class which has N elements
has N+171 system states, and the state

diagram is shown in Fig.4. lis superstates
are consequently (N+1)-dimensionat

(N—1)p 2A

Nu A

Fig.4 State diagram of the N-
component system.

vectors, g = (G, ..., Gy41), With binomially
distributed components, so that

Ay =(N O+l )™

n=1 .. N+1.

Or, if the unit of time is chosen so that 4=1,

Gy =l i) (17"

Assume that, in the range of interest, the
rate of cost of maintenance, C, is linearly
dependent on p, i.e.

C=c¢c,+cp.

There then remains to be determined only
the value function, and in order to
demonsirate the importance of the value
concept, three cases will be considered, as
illustrated in Fig.5, In the first case, W
is taken to be proportional to the system
capacity, i.e.

W, = w(n-1) .
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Fig.s Three different value

functions for the N-component
system.



In the second case, W is given by the
function

[ nw, n2n,
W= {
L 6 n<n,,

and in the third case

{ win-1),n2n,
W =
L 0 n<n, .

The solutions for the optimum value of p as
functions of c/w, with N and n, as
parameters, are not analylical expressions,
so they have to be illustrated by means of
some represenative numerical results.
Figure 6 shows Case 1 (where the result
does not depend on either N or n,) and
Case 2 for N = 3,6,72,22 and n, = N-1.
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Fig.6 The optimum MTTR, yu,
as a function of the value of
the output of an element, w,
for Case 1 and four instances
of Case 2. ‘

These curves show all the intuitively

expected features:

a. As the value of the output increases,
it pays to increase the repair rate
(and cost).

b. This increase in the repalr rate is less

in Case 2 than in Case 1 because of
the redundancy.

C. The optimum value of p Increases
with increasing N because the W
distribution and the g distribution
need to match each other.

d. Below a certain value of the output,
there is no optimum; it essentially
does not pay to repair the system at
all.

Figure 7 shows the influence of the degree
of redundancy for Case 2 and a system with
12 elements. Increasing degree of
redundancy means that the optimum repair
rate is reduced, as one would expect.
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Fig.7 The Influence of the
degree of redundancy.

Finally, Fig.8 shows the difference between
Case 2 and Case 3 for a system with six
elements, It illustrates the fact that what
may seem a small difference in value
function can lead to a not insignificant
change (e.g. a factor of 2} in the value of the
optimal repair rate.



CONCLUSION

The optimum repair policy problem has
been used to demonstrate the effectiveness
of the systems engineering methodology
and the central role played by the value
concept within such a top-down
methodology. Without a complete definition
of the value of the service provided by a
system, no meaningful optimisation of the
system design is possible,

102

10

1

1

[

I
€2
b
»
mm
R

ols

—1
e 10 10?2 10? 10*
Fig.8 The influence of the

detailed shape of the value
function.
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